April 30, 2013

North Carolina Ecosystem Enhancement Program Michael McDonald 1652 Mail Service Center Raleigh, NC 27699-1652

Re: McKee Creek, Cabarrus County EEP Project ID 92573 Year 1 Monitoring Report Comments Round Three

Dear Mr. McDonald,

Enclosed is the Final Draft of the referenced project report. We have revised the report as follows:

- 1. Removed "Draft" and added "Final" to the Cover
- 2. Added plant volunteer counts to Table 9.

We completed these edits as instructed by Ms. Julie Cahlill. We have remitted two copies to the Raleigh EEP office and one copy to the Asheville EEP office.

We trust this is responsive to your request. Please don't hesitate to call if you have any additional requests.

Sincerely,

WITHERS & RAVENEL, INC.

William "Billy" Lee, P.E., C.F.M., LEED-AP Vice President Water Resource

Cc: Ms. Julie Cahill

McKee Creek Stream Restoration Monitoring Report – Year 1 of 5 FINAL

Contract # 004391
EEP Project # 92573
Cabarrus County, North Carolina

Collected October 2012 Completed 2012 Report December 4, 2012 April 12, 2013 Revisions

Submitted to:

NCDENR-EEP 1601 Mail Service Center, Raleigh, NC 27699-1601

Prepared By:

ENGINEERS | PLANNERS | SURVEYORS

Withers & Ravenel 115 McKenan Drive Cary, NC 27511

Phone (919) 469-3340 Fax (919) 238-2099

Project Manager: William E. Lee Email: Blee@withersravenel.com

TABLE OF CONTENTS

Executive Summary / Project Abstract	. 1
Methodology	. 5
References	.5

Appendix A - Project Vicinity Map and Background Tables

Figure 1 - Vicinity Map

Table 1. - Project Components and Mitigation Credit

Table 1b-Component Summations

Table 2 - Project Activity and Reporting History

Table 3 - Project Contacts Table

Table 4 - Project Attribute Table

Appendix B - Visual Assessment Data

Figures 2 through 12 - Current Condition Plan View (CCPV)

Table 5 - Visual Stream Morphology Stability Assessment

Table 6 - Vegetation Condition Assessment Table

Photos - Vegetation Station Photos (1-4)

Photos - Stream Plot Photos (5-17)

Appendix C - Vegetation Plot Data

Table 7 - Veg. Plot Criteria Attainment Table

Table 8 - CVS Vegetation Metadata

Table 9 – Planted Stem Counts

Appendix D - Stream Survey Data

Exhibits-Cross-section Plots 1 through 6

Exhibits- Pebble Count

Exhibits – Longitudinal Profile Plot 1 through 3

Table 10a. - Baseline - Stream Data Summary

Table 10b- Baseline Stream Data Summary (Substrate, Bed, Bank, Hydrologic Containment

Parameter Distributions)

Table 11a. - Monitoring Data- Dimensional Morphology Summary

Table 11b. – Monitoring Data

Appendix E - Hydrology Data

Table 12. - Crest Gauge Readings and Monthly Rainfall Data

Executive Summary/ Project Abstract

The site is located roughly 10 miles northeast of Charlotte, NC. Figure 1 includes a map and directions to the site. The restoration was designed by Withers & Ravenel and construction completed by River Works Inc. in June 2010. This report summarizes the monitoring efforts for Monitoring Year-1 (MY-1) 2012.

McKee Creek was divided into two reaches within the project site; McKee Creek – Reach 1 is upstream of Peach Orchard Road and McKee Creek – Reach 2 is downstream of the road crossing. The pre-project stream lengths of McKee Creek – Reach 1 and Reach 2 were 3,733 linear feet (lf) and 847 lf, respectively. The pre-project reach length of Clear Creek; was 1,513 lf. The total pre-project stream length within the project limits was 6,093 lf.

The stream design resulted in 1,641 lf of stream restoration on Clear Creek, and 1,096 lf of Level I stream enhancement and 3,240 lf of Level II stream enhancement on McKee Creek. The total of stream design is 5,977 lf.

The project goals and objectives stated in the McKee Creek Restoration Plan (NCEEP 2008) are as follows:

Project Goals:

- Restore through stream enhancement (Level I and Level II) McKee Creek;
- Restore Clear Creek (Priority I restoration);
- Restore the physical and biological processes of McKee and Clear Creeks;
- Restore riparian vegetation to the maximum extent feasible.

Project Objectives:

- Improve water quality by reducing bank erosion, restricting livestock access to the creeks, and re-establishing the riparian buffer;
- Stabilize McKee Creek through the use of in-stream structures and pattern re-alignment in selected areas;
- Restore the dimension, pattern, and profile of Clear Creek;
- Improve the floodplain functionality of Clear Creek by matching floodplain elevation with bank full stage;
- Improve the wildlife habitat functions of the site through riparian buffer establishment, improved stream bed form diversity, and improved floodplain functionality to reduce stream incision;
- Protect the site through a permanent conservation easement along the project reaches.

Prior to project completion the streams suffered from excess sedimentation, channel incision, bank degradation, and limited riparian vegetation. The Lower Yadkin River Basin Local Watershed Plan states both McKee Creek (from source to Reedy Creek) and Clear Creek (from source to McKee Creek) 303(d) listed streams; McKee Creek for fecal coliform and sediment and Clear Creek for fecal coliform. NCDENR indicates the potential sources of impairment for McKee Creek and Clear Creek include agriculture, land development, and urban runoff/ storm sewers. Additionally McKee Creek has non-municipal discharges from two minor NPDES permitted discharges from private wastewater treatment plants located upstream of the project site. It is stated in the LWP that DWQ studies of fecal coliform bacterial sources for McKee and Clear Creeks indicated that livestock grazing was one of the contributing factors.

Monitoring of the project began with a visual site assessment in the spring of 2012 to identify potential problems. Cross-sections, crest gages, vegetation plots, and photo points were also established at that time. Base line information is not available since no monitoring was performed from the completion of construction in June 2010 till the spring 2012.

Project Complications

In addition to the delayed initiation of monitoring, several other factors have been detrimental to the goals of this mitigation. Approximately a month prior to the initial visual site assessment, a tornado caused damage in the area off the confluence of Clear Creek and McKee Creek. See Figure 2. The tornado downed large diameter trees with many spanning McKee and Clear Creek. These downed trees have been cleared across Clear Creek but remain an obstacle to access on the south bank. All the fallen trees on McKee Creek remain and are preventing this area from being surveyed.

The downed trees on the south bank of Clear Creek as well as three log jams unrelated to the tornado have impeded the monitoring effort. These downed trees have either attracted beavers or been exacerbated by a beaver population.

Since completion of the stream restoration project a sewer line was constructed along McKee Creek. The sewer serves a development west of McKee Creek and north of Peach Orchard Road. The sewer parallels the McKee Creek west bank from Peach Orchard Road to roughly stream station 40+00 where it traverses the stream and follows the east bank to a wastewater treatment plant (WWTP) upstream of the project area. This gravity sewer bucks grade to reach the WWTP from Peach Orchard Road. The construction of the sewer stream crossing required armoring both sides of the stream bank with rip rap for roughly 30 feet. The sewer has an easement along the alignment for access and maintenance that will be cleared. The easement clearing impact to the riparian buffer is limited to the stream crossing. Additionally it appears that the majority of survey control set during the stream restoration construction was destroyed by the sewer line construction. New survey control had to be established along McKee Creek south of Peach Orchard Road.

Vegetation Results

Success of the riparian buffer plantings will be based on plant survival, as per the buffer restoration guidelines, administered by the NC Division of Water Quality. Four (4) permanent monitoring plots were established along the restored buffer in spring of 2012. In order to be considered a successful restoration, the site must contain a minimum of 320 live stems per acre at year 3 and 260 live stems per acre at year 5. Year 1 shows an average of 567 live planted stems per acre with a minimum count of 405. These estimates are based on Level 2 of the CVS-EEP monitoring protocol and include only planted woody stems. The stem count is based on the average stem counts within the vegetation plots. Reference pictures of each monitoring plot were taken and attached to this report. The fact that all of the vegetation plots are performing above the requirement is good considering the 10 inch deficit of rain fall in the monitoring period.

Re-vegetation and elimination of invasives along McKee Creek Reach 2 was an important part of the success this project. The invasive species *Rosa* multiflora plagued the project site before and during construction. Construction logs indicate the *Rosa* multiflora was found to be three times greater than specified on the original plan and though denied, the contractor requested onsite burning multiple times. As a result, several rounds of spray treatment were applied followed by bush hogging the invasive species. During the fall assessment *Eleagnus* umbellata, *Rosa* multiflora, and *Lonicera* japonica were noted in Vegetation Plots 1 and 2. These plants are considered non-native invasive species and should be removed from the plots before overtaking the native vegetation.

Stream Results

A visual qualitative assessment was performed to inspect channel facets, meanders, beds, banks, and installed structures. This visual assessment was confirmed and enhanced with a quantitative assessment of a physical stream survey. This data will be used for comparison in the absence of initial baseline data. In general, Clear Creek appeared to be meeting expectation. A quick and dense development of vegetation proved to hold the stream together, along with the exclusion of bank damaging livestock. A majority of the Clear Creek is consistent from upstream to downstream of the ford.

A full restoration was not performed on McKee Creek Reach 1, so failure of structures was not assessed due to lack of structures. Over-widening and formation of mid-channel bars is present in a couple regions where the stream enters wooded areas and restoration was not completed. These bars are naturally formed and presumably present before the restoration of the stream and most likely stabilized, but will continue to be monitored for further aggradations. On McKee Creek, fine particle buildup in the streambed made bedform determination difficult. This occurred on Reach 2 from station 12+00 to the beginning of the tornado damage and again on Reach 1 from about 27+00 to 34+00. In addition, log jams were noted along both streams; all three log jams and mid-channel bars were placed in the CCPV. The log jams are important because of the potential for impeding flow and sediment transport capability of the stream, as well as creating the potential for additional mid channel bars.

McKee Creek Reach 2 appears to be stable despite the tornado damage. Cattle exclusion has allowed the banks to re-vegetate and stabilize. Effective floodplain connection remains from downstream of Peach Orchard Road for approximately 600 feet where the stream enters the tornado impacted area. The expected removal of additional debris over the next year will allow for a more thorough assessment of this portion of the stream be completed in Monitoring Year 2.

Hydrology Results

During the fall assessment, crest gages were checked for bankfull occurrences. The crest gages indicated water levels at or above bankfull for crest gages 1 and 3. crest gage 2 reads 0.2-0.3 feet below bankfull. On Reach 2 of McKee Creek, flattened and sparse vegetation, due to prolonged inundation and very soft soils at the edge of the banks, validate the bankfull or greater events at crest gage 1. The reading of crest gage 2 indicates events near bankfull, the presence of vegetation and small trees on the bank and at the very fringe of the floodplain leaned in the direction of flow are indicators of flow at or just above bankfull. Whether flow rates greatly exceeded the channel capacity or not is unknown but it demonstrates that this portion of the stream shows good floodplain connection and energy dissipation. crest gage 3 read roughly bankfull, the bank just downstream of list location is higher than bankfull so visual indicators are minimal but small terraces collecting falling leaves seem to be forming at approximately this same elevation between the gage and the confluence.

The rainfall data provided in the appendix as Table 12 was for Cabarrus County per the NC Climate website through NCSU, during the period between Dec 2011 and Dec 2012 which totaled 33.21 inches. This is compared to the Harrisburg Town website, which quotes an average annual rainfall of 43.8 inches "consistent with the average rainfall for Cabarrus County." This means that the site has experienced about a 10 inch rainfall deficit over the previous year.

Wetlands

No formal wetland assessment of this site was preformed. The site does have two small documented wetlands of 1,050 sf and 3,840 sf, which were discovered after the fall data collection. Both of these wetlands contain Chewacla type soils, according to the soils maps. In addition, there appears to be a small wetland just north of Peach Orchard Road approximately 150 ft west of the stream. The soil of this wetland appears to be moderately wet upon inspection and the surrounding ground and vegetation rather dry. Though not identified by a biologist, the plants that inhabited this small wetland looked to be wetland species. Further inspection and detail will follow in the MY-2 documents.

McKee Creek EEP Project No. 92573 Monitoring Year 1 of 5 Withers & Ravenel April 2013 Summary information/data related to the occurrence of items such as beaver or encroachment and statistics related to performance of various project and monitoring elements can be found in the tables and figures in the report appendices. Narrative background and supporting information formerly found in these reports can be found in the Baseline Monitoring Report (formerly Mitigation Plan) and in the Mitigation Plan (formerly the Restoration Plan) documents available on EEP's website. All raw data supporting the tables and figures in the appendices is available from EEP upon request

Methodology

All survey was preformed utilized either total station tradition survey methods or a survey grade GPS unit to capture points with high horizontal and vertical accuracy. The longitudinal stationing was formatted as close as possible to the original restoration plan stationing. The particle size distribution was collected using the standard Wolman pebble count procedure as taught by Dr. Gregory Jennings, North Carolina State University. The methodology used in this monitoring assessment followed the prescribed recommendation of the CVS-EEP Vegetation Monitoring Protocol Level-2.

References

Town of Harrisburg North Carolina, Visitors Page, Geography and Climate http://www.harrisburgnc.org/Visitors/GeographyClimate.aspx

Lower Yadkin LWP- PFR, 2003 and WMP&R - Lower Yadkin LWP, 2004 http://www.nceep.net/services/lwps/Clarke Creek/F R Rocky Yadkin.pdf

Wolman Pebble Count, http://limnology.wisc.edu/courses/zoo548/Wolman%20Pebble%20Count.pdf

Rainfall Data for Cabarrus County, http://www.nc-climate.ncsu.edu/cronos

Appendix A Project Vicinity Map and Background Tables

The subject project site is an environmental restoration site of the NCDENR Ecosystem Enhancement Program (EEP) and is encompassed by a recorded conservation easement, but is bordered by land under private ownership.

Therefore access by the general public is not permitted. Access by authorized personnel of state and federal agencies or their designees/contractors involved in the development, monitoring and stewardship of the restoration site is permitted within the terms and timeframes of their defined, pre-approved roles. Any intended site visitation or activity by any person outside of these previously sanctioned activities/roles requires prior coordination with EEP

Take US-64 West from the Raleigh area to I-85
(approximatley 85 miles). Take I-85 south toward Charlotte
(approximately 48 miles). Take exit 48 onto I-485 toward
Rock Hill (approximately 8 miles) Take exit 39 onto
Harrisburg Road north stay on Robinson Church for
approximately 1 mile and then turn right onto
NCSR 1169 Peach Orchard Road.
Peach Orchard Road intersects the project site.

Miles 0 0.25 0.5

Figure 1: Vicinity Map
McKee Creek Stream Restoration
EEP # 92573
Cabarrus County, NC
December 3, 2012

		Table	1. Project (McKe	Components e Creek Pro	Table 1. Project Components and Mitigation Credits McKee Creek Project # 92573	ition Credit	S	
Project Component or Reach ID	Existing Feet/Acres	Restoration Level	Approach	Footage or Acreage	Stationing	Mitigation Ratio	BMP Elements ¹	Comment
McKee Reach 1	3240	E2	P4	3240	10+00 - 25+00 29+00 - 46+40	2.5:1 MAX		This is a mix of P2 and P4 as designated by the stationing.
McKee Reach 1	493	E1	P2	400	25+00 - 29+00	1.5:1 MAX		
McKee Reach 2	847	E1	P2	969	10+00 -	1.5:1 MAX		The reach is a mix of P2 and P3, but is mostly dominated by P2. Includes 200 lf of channel relocation
Clear Creek	1513	Ж	P1	1641	11+03.05 - 27+59.18	1 to 1		Includes 1,351 If of channel relocation

1 = BR = Bioretention Cell; SF = Sand Filter; SW = Stormwater Wetland; WDP = Wet Detention Pond; DDP = Dry Detention Pond; FS = Filter Strip; Grassed Swale = S; LS = Level Spreader; NI = Natural Infiltration Area, O = Other CF = Cattle Fencing; WS = Watering System; CH = Livestock Housing

Restoration Stream Level (If)	eam If)	Riparian Wetland (Ac) Nor	rian d (Ac)	Non-Ripar	Unland		
		Riverine	2012	(Ac)	(Ac)	Buffer (Ac)	BMP
			Non- Riverine				
	141						
Enhancement		The Control of			6 TH 15		
Enhancement I 109	1096						
Enhancement II 324	3240						
Creation	5						
Preservation							
HQ Preservation	٦				SHESS PROPERTY.		
Totals (Feet/Acres) 5977	122	0		0	0	0	

Non-Applicable

Table 2. Project Activity and Reporting History McKee Creek Project # 92573	rting History 573	
	Data Collection	Completion or
Activity or Deliverable	Complete	Delivery
Restoration Plan		Aug-08
Final Design – Construction Plans		Apr-09
Construction		May-10
Containerized, bare root and B&B plantings for reach/segments 1&2		May-10
Mitigation Plan / As-built (Year 0 Monitoring – baseline)		
Spring Year 1 Monitoring	Apr-12	May-12
Fall Year 1 Monitoring	Oct-12	Nov-12
Spring Year 2 Monitoring		
Fall Year 2 Monitoring		

Non-bolded items represent events that are standard components over the course of a typical project. Bolded items are examples of those items that are not standard, but may come up and should be included

The above are obviously not the extent of potential relevant project activities, but are just provided as example as part of this exhibit.

Tab Mo	ole 3. Project Contacts Table cKee Creek Project # 92573
Designer	Withers & Ravenel, Inc.
2 se.gs.	111 MacKenan Drive Cary, NC 27511
Primary project design POC	Alwyn Smith, P.E. (919) 467-6008
Construction Contractor	River Works Inc.
	6105 Chapel Hill Road Raleigh, NC 27607
Construction contractor POC	Edward Haynes
Survey Contractor	Turner Land Surveying
Survey contractor POC	Elisabeth Turner
Planting Contractor	River Works Inc.
	6105 Chapel Hill Road Raleigh, NC 27607
Planting contractor POC	Edward Haynes
Seeding Contractor	Green Resources
	5204 Highgreen Ct Colfax, NC 27235
Contractor point of contact	Rodney Montgomery
Seed Mix Sources	
Nursery Stock Suppliers	Not Known
Monitoring Performers	Withers & Ravenel, Inc.
	111 MacKenan Drive Cary, NC 27511
Stream Monitoring POC	Billy Lee, P.E. (919) 467-6008
Vegetation Monitoring POC	Billy Lee, P.E. (919) 467-6008
Wetland Monitoring POC	

Table /	I. Project Attribute	Table	
	e Creek Project # 9		
Project County	e Oleek i Toject # 3	Cabarrus	
Physiographic Region		Piedmont	
Ecoregion		Southern Outer Piedmor	nt
Project River Basin		Yadkin-Pee Dee	
USGS HUC for Project (14 digit)			
NCDWQ Sub-basin for Project		Clear- 03-07-11/03-08-3	4
Within extent of EEP Watershed Plan?		Name the plan documen	
WRC Hab Class (Warm, Cool, Cold)		Cool	
% of project easement fenced or demarcated	M	1cKee - 100% Clear-100	%
Beaver activity observed during design			
phase?		Yes	
Restoration	on Component Attrib	ute Table	
	McKee Reach 1	McKee Reach 2	Clear Creek
Drainage area (acres)	4131	4214	635
Stream order	2	2	11
Restored length (feet)	3640	696	1641
Perennial or Intermittent	Perennial	Perennial	Perennial
Watershed type (Rural, Urban, Developing			
etc.)	Developing	Developing	Rural
Watershed LULC Distribution (e.g.) acres			400
Single Family	2150	2147	106
Woods	1154	1166	469
Commercial	114 73	113 73	
Govt-Inst Warehouse	73 76	76	
Pasture	565	640	60
Watershed impervious cover (%)	16	16	4
NCDWQ AU/Index number			
NCDWQ classification	С	С	C/C
303d listed?	Yes	Yes	Yes
Upstream of a 303d listed segment?	Yes	Yes	Yes
	Fecal Coliform.	Fecal Coliform,	
Reasons for 303d listing or stressor	Sediment	Sediment	Fecal Coliform
Total acreage of easement	10.63	2.03	4.75
Total vegetated acreage within the easement	2.57	0.11	1.76
Total planted acreage as part of the			
restoration	2.57	0.11	1.76
Rosgen classification of pre-existing	E4	E4	E/C5
Rosgen classification of As-built	E4	E4	E/C5
Valley type	VIII	VIII	VIII
Valley slope	0.005	0.005	0.014
Valley side slope range (e.g. 2-3.%)	1-2%	1-2%	1-2%
Valley toe slope range (e.g. 2-3.%)	1-2%	1-2%	1-2%
Cowardin classification	PFO1A	PFO1A	PFO1A
Trout waters designation	No	No	No
Charles of concern and characterist to 0.0/h)	V	l vaa	Vac
Species of concern, endangered etc.? (Y/N) Dominant soil series and characteristics	Yes	Yes	Yes
	Chewacla	Chewacla	Chewacla
Series			6 to 24 inches
Depth	6 to 24 inches	6 to 24 inches	
Clay%	20.5	20.5	20.5
K T	0.275 4.584	0.275 4.584	0.275 4.584
	4.084	4.364	4.004

Use for items that may not apply. Use "-" for items that are unavailable and "U" for items that are unknown

Appendix B Visual Assessment Data

Table 5

Visual Stream Morphology Stability Assessment

Reach ID

McKee Creek Reach 1

Assessed Length 3301

Major Channel Category	Channel Sub- Category	Metric	Number of Stable Performing as Intended	Total Number in As-Built	Number of Unstable Segments	Amount of Unstable Footage	% Stable Performing as Intended	Number with Stabilizing Woody Vegetation	Footage with Stabilizing Woody Vegetation	Adjusted % for Stabilizing Woody Vegetation
	Vertical Stability	Aggradation- Bar formation/growth sufficient to significantly deflect flow latereally (not to include point bars)			0	0	100%			
		Degradation-Evidence of downcutting			0	0	100%			
	Riffle Condition	Texture/Substrate - Riffle maintains coarser substrate	2	2			100%			
Bed	Meander Pool	Depth Sufficient (Max Pool Depth: Mean Bankfull Depth>= 1.6)	11	12			92%			
	Condition	Length Appropriate(>30% of centerline distance between tail of upstream riffle and head of downstream riffle)	12	12			100%			
	Thalweg Position	Thalweg centering at upstream of meander bend (Run)	12	12			100%			
	Thalweg T osition	Thalweg centering at dowsntream of meadner bend (glide)	12	12						
Washington De		many of the section o		A NEW YORK					SAFET BUT I AND VALUE OF SAME	
	Scoured/Eroding	Bank lacking vegetative cover resulting simply from poor growth and or scour and erosion			0	0	100%	0	0	100.00%
Bank	Undercut	Banks undercut/overhanging to the extednt that mass wasting appears likely. Does NOT include undercuts that are modest, appear sustainable and are providing habitat			0	0	100%	0	0	100.00%
	Mass Wasting	Bank slumping, caving, or collapse	Carried March 1980	Totals	0	0	100%	0	0	100.00%
	to selve in merchanis				0	0	100%	0	0	100.00%
	Overall Integrity	Structures physically intact with no dislodged boulders or logs	1	1			100%			
	Grade Control	Grade control structures exhibiting maintenance of grade across the sill	1	1			100%			
Engineered	Piping	Structures lacking any substation flow underneath sills or arms	1	1			100%			
Structures	Bank Protection	Bank erosion within the stuctures extednt of influence does not exceed 15%. (See guidance for this table in EEP monitoring guidance document)	1	1			100%			
	Habitat	Pool forming structures maintaining ~ Max Pool Depth: Mean Bankfull Depth >= 1.6 Rootwads/logs providing some cover at base-flow	1	1			100%			100

Table 5

Visual Stream Morphology Stability Assessment

Reach ID

McKee Creek Reach 2 723

Assessed Length

Major Channel Category	Channel Sub- Category	Metric	Number of Stable Performing as Intended	Total Number in As-Built	Number of Unstable Segments	Amount of Unstable Footage	% Stable Performing as Intended	Number with Stabilizing Woody Vegetation	Footage with Stabilizing Woody Vegetation	Adjusted % for Stabilizing Woody Vegetation
	Vertical Stability	Aggradation- Bar formation/growth sufficient to significantly deflect flow latereally (not to include point bars)			0	0	100%			
		Degradation-Evidence of downcutting		TEXA MALE	0	0	100%			
	Riffle Condition	Texture/Substrate - Riffle maintains coarser substrate	0	0			100%			
Bed	Meander Pool	Depth Sufficient (Max Pool Depth: Mean Bankfull Depth>= 1.6)	4	4			100%			
	Condition	Length Appropriate(>30% of centerline distance between tail of upstream riffle and head of downstream riffle)	4	4			100%			
	Thalweg Position	Thalweg centering at upstream of meander bend (Run)	4	4			100%			
	Thalweg Position	Thalweg centering at dowsntream of meadner bend (glide)	4	4			100%			9778
2 X 2 X 1 X 1 X 1 X 1 X X X X X X X X X	The state of the s		AND DESIGNATION OF THE PARTY OF	A DECEMBER OF STREET	Washington Mark			BUBBLE AND THE STATE OF THE STA	SE DE MINERAL CHICAGO LINES DEL SON	and the state of t
Bank	Scoured/Eroding	Bank lacking vegetative cover resulting simply from poor growth and or scour and erosion			0	0	100%	0	0	100,00%
	Undercut	Banks undercut/overhanging to the extednt that mass wasting appears likely. Does NOT include undercuts that are modest, appear sustainable and are providing habitat			0	0	100%	0	0	100.00%
	Mass Wasting	Bank slumping, caving, or collapse	Dental State of March 19	Totals	0	0	100%	0	0	100.00% 100.00%
TERROR (CARRELL)	Laver Control		TOURS AND IN THE CHOICE		0	0	100%	0	0	100.00%
	Overall Integrity	Structures physically intact with no dislodged boulders or logs	5	5			100%			
	Grade Control	Grade control structures exhibiting maintenance of grade across the sill	5	5			100%			
Engineered	Piping	Structures lacking any substation flow underneath sills or arms	5	5			100%			
Structures	Bank Protection	Bank erosion within the stuctures extednt of influence does not exceed 15%. (See guidance for this table in EEP monitoring guidance document)	5	5			100%			
	Habitat	Pool forming structures maintaining ~ Max Pool Depth: Mean Bankfull Depth >= 1,6 Rootwads/logs providing some cover at base-flow	5	5			100%			

Table 5

Visual Stream Morphology Stability Assessment

Reach ID

Clear Creek

		Numb	per of Stable	Namela a a di Ila a da la la	Τ.
Assessed Length	1566				

Major Channel Category	Channel Sub- Category	Metric	Number of Stable Performing as Intended	Total Number in As-Built	Number of Unstable Sections	Amount of Unstable Footage	% Stable Performing as Intended	Number with Stabilizing Woody Vegetation	Footage with Stabilizing Woody Vegetation	Adjusted % for Stabilizing Woody Vegetation
	Vertical Stability	Aggradation- Bar formation/growth sufficient to significantly deflect flow latereally (not to include point bars)			0	0	100%			
		Degradation-Evidence of downcutting			0	0	100%	SERVICE		
	Riffle Condition	Texture/Substrate - Riffle maintains coarser substrate	2	2			100%			
Bed	Meander Pool	Depth Sufficient (Max Pool Depth: Mean Bankfull Depth>= 1.6)	16	16			100%			
	Condition	Length Appropriate(>30% of centerline distance between tail of upstream riffle and head of downstream riffle)	16	16			100%			
	Thalweg Position	Thalweg centering at upstream of meander bend (Run)	16	16			100%			
	Thatweg Fosition	Thalweg centering at dowsntream of meadner bend (glide)	16	16			100%			
		是"是这种的现在分类"的特别,可以 是 为是的是一个人。			6125					
Bank	Scoured/Eroding	Bank lacking vegetative cover resulting simply from poor growth and or scour and erosion			0	0	100%	0	0	100.00%
	Undercut	Banks undercut/overhanging to the extednt that mass wasting appears likely. Does NOT include undercuts that are modest, appear sustainable and are providing habitat			10	10	99%	0	0	99.00%
	Mass Wasting	Bank slumping, caving, or collapse			0	0	100%	0	0	100.00%
				Totals	0	0	100%	0	0	100.00%
	Overall Integrity	Structures physically intact with no dislodged boulders or logs	13	13			100%			
	Grade Control	Grade control structures exhibiting maintenance of grade across the sill	4	4			100%			
Engineered	Piping	Structures lacking any substation flow underneath sills or arms	20	20			100%			
Structures	Bank Protection	Bank erosion within the stuctures extednt of influence does not exceed 15%. (See guidance for this table in EEP monitoring guidance document)	19	20			95%			
	Habitat	Pool forming structures maintaining ~ Max Pool Depth: Mean Bankfull Depth >= 1.6 Rootwads/logs providing some cover at base-flow	5	5			100%			

Photo 1- Veg Plot 1- Year 1 (2012)

Photo 2- Veg Plot 2- Year 1 (2012)

Photo 3- Veg Plot 3- Year 1 (2012)

Photo 4- Veg Plot 4- Year 1 (2012)

Photo 7- Riffle XS 2- Year 1 (2012)

Photo 8- Pool XS 2 - Year 1 (2012)

Photo 9 - Riffle XS 3 - Year 1 (2012)

Photo 10 - Pool XS 3 - Year 1 (2012)

Photo 11- Photo Point 1- Year 1 (2012)

Photo 12 - Photo Point 2 - Year 1 (2012)

Photo 13 - Photo Point 3 - Year 1 (2012)

Photo 14 - Photo Point 4 - Year 1 (2012)

Photo 15- Photo Point 5 - Year 1 (2012)

Photo 16 - Photo Point 6 - Year 1 (2012)

Photo 17 - Photo Point 7 - Year 1 (2012)

Appendix C Vegetation Plot Data

Table 6 Vegetation Condition Assessment McKee Creek Project # 92573

Planted Acreage

4.44

Vegetation Category	Definitions	Mapping Threshold	CCPV Depiction	Number of Polygons	Combined % of Planted Acreage	% of Planted Acreage
Bare Area	Very limited cover of both woddy and herbaceous material	1 acres	Pattern and Color	0	0	0
Low Stem Density Areas	Woody stem densities clearly below target levels based on MY3, 4, or 5 stem count criteria	.1 acres	Pattern and Color	0	0	0
		医型型/原因性				The Property of
Areas of Poor Growth Rates or Vigor	Areas with woody stems of a size class that are obviously small given the monitoring year	.25 Acres	Pattern and Color	0	0	0

	•	1
K	•	t
ľ	ľ	1
ı	ñ	6
ľ	2	۴
K	y	u
ľ	þ	-
Ü	L	3
	ē	ŕ
7	۰	٠
1	ř	=
	•	
	Ç	Ų
	¢	
	S	
	ú	į.
	č	Ċ
E	ï	ī
í	4	4

17.41

Lasinelli Acicago						
		Mapping	CCPV	Numper of	Combined	% of
Vegetation Category	Dennitions	Threshold	Depiction	Polygons	Acreage	Easement
	(a) and some for any some and each some at 11 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	E00 CE	Pattern and	•	0.011478421	0.07%
Invasive Areas of Concern	Areas or points (if too small to render as polygons at map scale)	10 000	Color		0.011710.0	20.00
		BARTANCE	Manager 19		子のとなって	
		None	Pattern and	c	c	c
Easement Encroachment Areas	Areas or points (if too smail to render as polygons at map scale)	allon	Color	5	>	

Tal	ble 7. Veg Plot Criteria Attainment
	McKee Creek Project # 92573
Vegetation Plot ID	Vegetation Survival Threshold Met?
1	Yes
2	Yes
3	Yes
4	Yes
	Table 8. CVS Vegetation Plot Metadata McKee Creek Project # 92573
Report Prepared By	Daniel Wiebke
Date Prepared	41260.64791
database name	WithersRavenel-2012-A.mdb
database location	C:\Users\Daniel\Desktop
computer name	DANIEL-PC 60686336
file size DESCRIPTION OF WORKSHEETS	
DESCRIPTION OF WORKSHEETS	Description of database file, the report worksheets, and a summary of
Metadata	project(s) and project data. Each project is listed with its PLANTED stems per acre, for each year.
Proj, planted	This excludes live stakes.
Proj, total stems	Each project is listed with its TOTAL stems per acre, for each year. This includes live stakes, all planted stems, and all natural/volunteer stems. List of plots surveyed with location and summary data (live stems, dead
Plots	stems, missing, etc.).
Vigor	Frequency distribution of vigor classes for stems for all plots.
Vigor by Spp	Frequency distribution of vigor classes listed by species.
550	List of most frequent damage classes with number of occurrences and
Damage	percent of total stems impacted by each.
Damage by Spp	Damage values tallied by type for each species.
Damage by Plot	Damage values tallied by type for each plot.
	A matrix of the count of PLANTED living stems of each species for each
Planted Stems by Plot and Spp	plot; dead and missing stems are excluded. A matrix of the count of total living stems of each species (planted and natural volunteers combined) for each plot; dead and missing stems are
ALL Stems by Plot and spp	excluded.
PROJECT SUMMARY	
Project Code	92573
project Name	McKee Creek McKee Creek Upstream and Downstream of Peach Orchard and Clear
Description	Creek
River Basin	Yadkin-Pee Dee
length(ft) stream-to-edge width (ft)	
area (sq m)	
Required Plots (calculated) Sampled Plots	4

	Table 9. Planted Stem Counts (Species by Plot with Annual Means)	Counts (S	pecies	by Plo	t with /	Annual	Means)		
	McK	McKee Creek Project # 92573	Projec	t # 925	73				
				Current Data	nt Data		Anr	Annual Means	6
	Common Name	Туре	Plot 1	Plot 2	Plot 3	Plot 4	Current Mean	MY 2	MY 2 (2013)
			۵	Д	Ь	Ь	Ь	Р	⊥
Acer negundo	Box Elder		0	0	0	0	0		
Betula nigra	River Birch	Tree	1	0	2	0	0.75		
Carya aquatica	Water Hickory		0	2	0	0	0.5		
Diospyrus virginiana	Persimmon		0	0	0	0	0		
Eleagnus umbellata	Autumn Olive		0	0	0	0	0	2.00	
Fraxinus pennsylvanica	Green Ash	Tree	0	3	1	0	1		
Juglans nigra	Black Walnut	Tree	9	0	0	1	1.75		
Liquidambar styraciflua	Sweetgum		0	0	0	0	0		0
Liriodenron tulipifera	Tulip Poplar	Tree	0	0	1	2	0.75	100	
Plantanus	Sycamore	Tree	0	0	0	0	0		AG (81)
Platanus occidentalis	American Sycamore	Tree	1	5	1	11	4.5		
Quercus michauxii	Swamp Chestnut Oak	Tree	0	0	4	0		H	
Quercus nigra	Water Oak		0	0	0	0	0		
Quercus sp.	Oak	Shrub Tree	0	0	2	0	0.5		
Rhus copallinum	Winged Sumac		0	0	0	0	0		
Salix nigra	Black Willow	Tree	2	0	0	7	2.25		
Ulmus alata	Winged Elm		0	0	0	0	0		
Unknown	Unknown	Unknown	0	0	1	3	1		
	Plot Area (acres)	(0.0247	0.0247	0.0247	0.0247			
	Species Count		4	3	7	5	6.25		
	Stem Count		10	10	12	24			
	Stems Per Acre		405	405	486	972	267		

<u>Appendix D</u> <u>Stream Survey Data</u>

Summary Data

River Basin	Yadkin Pee-Dee
Watershed	McKee MY-01
QI-SX	RXS-1
Drainage Area	6.42 sq. mi
Date	11/1/2012
Field Crew	D. Wiebke, D. Byrd

Elevation 583.38 582.17 580.67 576.88 576.93 576.99 576.99

	THE REAL PROPERTY.
Bankfull Elevation	579.248
Bankfull Cross-Sectional Area	53
Bankfull Width	24.27
Flood Prone Area Elevation	581.928
Flood Prone Width	32
Max Depth at Bankfull	2.76
Mean Depth at Bankfull:	1.89
W/D Ratio:	12.82
Entrenchment Ratio:	1.32
Bank Height Ratio:	2.53

ı,	×
ı	≘
ı	Bank
ŀ	2
ļ	Right
ı	œ
ı	2
ľ	Bank
ı	æ
ľ	eff
Į.	ت
i	
ı	

576.47

579.17 581.36

38.2 38.2 40.2 44.2 46.5 46.5 50.2 51.5

The second secon	The state of the s
River Basin	Yadkin Pee-Dee
Watershed	McKee MY-01
QI-SX	PXS-1
Drainage Area	6.42 sq. mi
Date	11/1/2012
Field Crew	D. Wiebke, D. Byrd

Elevation	582.72	582.03	580.78	579.43	577.58	577.37	576.91	576.05	575.82	575.53	575.59	575.77	575.98	576.87	578.42	579.43	580.33	581.78	582.72
Station	12	14	16	17.0	81	20	22	24	26	28	30	32	34	36	38	40	42	44	46

Summary Data	a
Bankfull Elevation	579.43
Bankfull Cross-Sectional Area	63.68
Bankfull Width	22.53
Flood Prone Area Elevation	583.33
Flood Prone Width	110
Max Depth at Bankfull	3.9
Mean Depth at Bankfull:	2.45
W/D Ratio:	9.5
Entrenchment Ratio:	4.88
Bank Height Ratio:	1.84

to Right Bank	
to Right i	3ank
9	=
Bank	Bank t
Left	.eft

River Basin	Yadkin Pee-Dee
/atershed	Clear MY-0'
XS-ID	PXS-1
rainage Area	96'0
Date	11/1/2012
Field Crew	D. Wiebke, D. Byrd

Elevation	580.16	579,44	575.47	575.57	575.61	575,47	576.08	576.37	576.56	576.96	277.67	578.39	579.08	579.07	579.29	579.47	579.81	580 16
Station	2	3	4	5	9	7	8	6	10	11	12	13	14	15	16	17	18	10

Bonishill Eloumina 570.44	
Elevation	4
Bankfull Cross-Sectional Area 30,61	
Bankfull Width 17	
Flood Prone Area Elevation 583,41	1
Flood Prone Width 150	
Max Depth at Bankfull 3.97	
Mean Depth at Bankfull: 2,55	
W/D Ratio: 6.66	
Entrenchment Ratio: 8.82	
Bank Height Ratio: 1.18	

l	Juc Dank	4	
l	the Dish		
l	Dank to	משוצי	
	40	ľ	I

SHOULD STREET STREET	Contract of the Contract of th
River Basin	Yadkin Pee-Dee
Watershed	Clear MY-01
QI-SX	RXS-2
Drainage Area	0.95
Date	11/1/2012
Field Crew	D. Wiebke, D. Byrc

Summary Data	a
Bankfull Elevation	580.84
Bankfull Cross-Sectional Area	25.85
Bankfull Width	18
Flood Prone Area Elevation	583.27
Flood Prone Width	150
Max Depth at Bankfull	2.43
Mean Depth at Bankfull:	1.36
W/D Ratio:	13.23
Entrenchment Ratio:	8.33
Bank Height Ratio:	1

580.09 579.50 579.33 578.86 578.41 578.43 578.45 578.68 578.98 57

River Basin	Yadkin Pee-Dee
Watershed	Clear MY-01
QI-SX	RXS-3
Drainage Area	0.95
Date	11/1/2012
Field Crew	D. Wiebke, D. Byrd

Elevation	579.87	579.67	579.28	578.91	578.71	578.47	96'225	578.04	7.40 044600
Station	0	1	2	3	4	5	9	7	

Summary Data	а
Bankfull Elevation	579.87
Bankfull Cross-Sectional Area	21.02
Bankfull Width	17
Flood Prone Area Elevation	581,83
Flood Prone Width	250
Max Depth at Bankfull	1.96
Mean Depth at Bankfull:	1.11
W/D Ratio:	15.37
Entrenchment Ratio:	14,71
Bank Height Ratio:	1

ш
×
Bank
8
Ħ
Righ
9
논
3a
Ŧ
eft

River Basin	Yadkin Pee-Dee
Watershed	Clear MY-01
QI-SX	PXS-3
Drainage Area	0.95
Date	11/1/2012
Field Crew	D. Wiebke, D. Byrd

Elevation	579.14	278.68	578.87	577.53	577.89	216.63	59.925	575.97	576.29	275.68	575.73	576.61	577.16	578.22	578.78	579 14
Station	_	2	က	4	5	9	7	∞	6	10	11	12	13	14	15	16

	579.43	27.27	15	582,89	250	3.46	3.46	8.8	16.67	1
Summary Data	Bankfull Elevation	Bankfull Cross-Sectional Area	Bankfull Width	Flood Prone Area Elevation	Flood Prone Width	Max Depth at Bankfull	Mean Depth at Bankfull:	W/D Ratio:	Entrenchment Ratio:	Bank Height Ratio:

	ank
	ä
	ght
	ĕ
	9
	Bank
	Left
ı	

Pebble Count Exhibit

McKee Creek

100.00% %00.06 70.00% %00 09 %00.09 40 00%

80.00%

	200	בער סווג	Merce of eer offeall hesotiation	J. I ation
		Mckee	Creek	
		Riffle	fle	
Particle	Size	Count	Percent	Cumulative Percent
Silt Clay	0.062		%00.0	%00.0
	0.0935		%00.0	%00.0
	0.1875	9	5.45%	5.45%
Sand	0.375		%00.0	5.45%
	0.75	2	1.82%	7.27%
	1.5		%00.0	7.27%
	3		%00.0	7.27%
	4.85		%00'0	7.27%
	6.85	2	1.82%	%60'6
	9.62	2	1.82%	10.91%
Gravel	13.65	2	1.82%	12.73%
	19.3	12	10.91%	23.64%
	27.3	12	10.91%	34.55%
	38.5	12	10.91%	45.45%
	54.5	18	16.36%	61.82%
	2.2	12	10.91%	72.73%
Oldhoo	109	14	12.73%	85.45%
	154	2	1.82%	87.27%
	218	8	7.27%	94.55%
	309	9	5.45%	100.00%
a control	437		%00'0	100.00%
aning	768		0.00%	100.00%
	1536		0.00%	100.00%
Bedrock	2048		%00.0	100.00%
Total		110	100 00%	

109 309

D50 D84 D95

Summary Data

Mackee Creek Particle Size Count Silt Clay 0.062 Count C	Mc	kee Cre	ek Stre	Mckee Creek Stream Resotration	tration
Riffle Size Count Percent 0.062 0.00% 0.0835 0.00% 0.1875 6 5.45% 0.375 0.00% 0.00% 4.85 2 1.82% 9.65 2 1.82% 13.65 2 1.82% 13.65 2 1.82% 13.65 2 1.82% 13.65 2 1.82% 14.27.3 10.91% 27.3 12 10.91% 27.3 12 10.91% 27.3 12 10.91% 27.3 12 10.91% 27.5 12 10.91% 154 2 1.82% 154 2 1.82% 218 8 7.27% 309 6 5.45% 437 0.00% 768 0.00% 1536 0.00% 0.00% 0.00% <			Mckee	Creek	
Size Count Percent 0.062 0.00% 0.0835 0.00% 0.1875 6 5.45% 0.375 0.00% 0.75 2 1.82% 1.5 2.00% 0.00% 4.85 2 1.82% 13.65 2 1.82% 13.65 2 1.82% 13.65 2 1.82% 13.65 2 1.82% 14.3 12.13% 12.13% 15.4 1 10.91% 27.3 1 10.91% 27.3 1 10.91% 27.3 1 10.91% 27.5 1 1 27.5 1 1 27.5 1 1 27.6 2 1 27.8 3 6 5.45% 437 0.00% 0.00% 768 0.00% 0.00% 2048 0.00% 0.00%			Riff	le.	
0.062 0.00% 0.0935 0.00% 0.1875 6 5.45% 0.375 0.00% 1.5 0.00% 3 0.00% 4.85 0.00% 6.85 2 1.82% 13.65 2 1.82% 19.3 12 10.91% 27.3 12 10.91% 27.3 12 10.91% 4.5 18 16.36% 77 12 10.91% 109 14 12.73% 154 2 1.82% 218 8 7.27% 309 6 5.45% 768 0.00% 768 0.00% 1536 0.00% 1536 0.00% 2048 110 0.00%	Particle	Size	Count	Percent	Cumulative Percent
0.0935 0.00% 0.1875 6 5.45% 0.375 0.00% 1.5 0.00% 3 0.00% 4.85 0.00% 6.85 2 1.82% 13.65 2 1.82% 19.3 12 10.91% 27.3 12 10.91% 27.3 12 10.91% 54.5 18 16.36% 77 12 10.91% 109 14 12.73% 154 2 1.82% 218 8 7.27% 309 6 5.45% 768 0.00% 768 0.00% 1536 0.00% 1536 0.00% 1536 0.00% 1536 0.00% 1536 0.00%	Silt Clay	0.062		%00.0	0.00%
0.1875 6 5.45% 0.375 0.00% 0.75 2 1.82% 1.5 0.00% 3 0.00% 4.85 2 1.82% 6.85 2 1.82% 13.65 2 1.82% 19.3 12 10.91% 27.3 12 10.91% 27.3 12 10.91% 109 14 12.73% 109 14 12.73% 154 2 1.82% 218 8 7.27% 309 6 5.45% 768 0.00% 768 0.00% 1536 0.00% 1536 0.00% 1536 0.00% 1536 0.00%		0.0935		%00.0	%00.0
0.375 0.00% 0.75 2 1.82% 1.5 0.00% 3 0.00% 4.85 0.00% 6.85 2 1.82% 9.65 2 1.82% 13.65 2 1.82% 27.3 12 10.91% 27.3 12 10.91% 54.5 18 16.36% 77 12 10.91% 109 14 12.73% 154 2 1.82% 218 8 7.27% 309 6 5.45% 768 0.00% 768 0.00% 1536 0.00% 1536 0.00% 1536 0.00% 1536 0.00%		0.1875	9	5.45%	5.45%
0.75 2 1.82% 1.5 0.00% 3 0.00% 4.85 0.00% 6.85 2 1.82% 9.65 2 1.82% 13.65 2 1.82% 27.3 12 10.91% 27.3 12 10.91% 54.5 18 16.36% 77 12 10.91% 109 14 12.73% 154 2 1.82% 218 8 7.27% 309 6 5.45% 768 0.00% 768 0.00% 1536 0.00% 1536 0.00% 1536 0.00% 1536 0.00%	Sand	0.375		%00.0	5.45%
1.5 0.00% 3 0.00% 4.85 0.00% 6.85 2 1.82% 9.65 2 1.82% 13.65 2 1.82% 27.3 12 10.91% 27.3 12 10.91% 54.5 18 16.36% 77 12 10.91% 109 14 12.73% 154 2 1.82% 218 8 7.27% 309 6 5.45% 768 0.00% 768 0.00% 1536 0.00% 2048 0.00%		0.75	2	1.82%	7.27%
3 0.00% 4.85 0.00% 6.85 2 1.82% 9.65 2 1.82% 13.65 2 1.82% 19.3 12 10.91% 27.3 12 10.91% 38.5 12 10.91% 77 12 10.91% 109 14 12.73% 154 2 1.82% 218 8 7.27% 309 6 5.45% 768 0.00% 768 0.00% 1536 0.00% 2048 0.00%		1.5		%00.0	7.27%
4.85 0.00% 6.85 2 1.82% 9.65 2 1.82% 13.65 2 1.82% 19.3 12 10.91% 27.3 12 10.91% 38.5 12 10.91% 77 12 10.91% 109 14 12.73% 154 2 1.82% 218 8 7.27% 309 6 5.45% 768 0.00% 768 0.00% 2048 0.00% 1536 0.00% 2048 110.00%		3		%00.0	7.27%
6.85 2 1.82% 9.65 2 1.82% 13.65 2 1.82% 19.3 12 10.91% 27.3 12 10.91% 38.5 12 10.91% 77 12 10.91% 109 14 12.73% 154 2 1.82% 218 8 7.27% 309 6 5.45% 768 0.00% 1536 0.00% 2048 0.00% 1536 0.00% 160.00% 0.00%		4.85		%00.0	7.27%
9.65 2 1.82% 13.65 2 1.82% 19.3 12 10.91% 27.3 12 10.91% 38.5 12 10.91% 54.5 18 16.36% 77 12 10.91% 109 14 12.73% 154 2 1.82% 218 8 7.27% 309 6 5.45% 768 0.00% 768 0.00% 1536 0.00% 2048 10.00%		6.85	2	1.82%	%60'6
13.65 2 1.82% 19.3 12 10.91% 27.3 12 10.91% 38.5 12 10.91% 54.5 18 16.36% 77 12 10.91% 109 14 12.73% 154 2 1.82% 218 8 7.27% 309 6 5.45% 768 0.00% 768 0.00% 1536 0.00% 2048 10.00%		9.62	2	1.82%	10.91%
19.3 12 10.91% 27.3 12 10.91% 38.5 12 10.91% 54.5 18 16.36% 77 12 10.91% 109 14 12.73% 154 2 1.82% 218 8 7.27% 309 6 5.45% 437 0.00% 768 0.00% 1536 0.00% 2048 10.00%	Gravel	13.65	2	1.82%	12.73%
27.3 12 10.91% 38.5 12 10.91% 54.5 18 16.36% 77 12 10.91% 109 14 12.73% 154 2 1.82% 218 8 7.27% 309 6 5.45% 437 0.00% 768 0.00% 2048 0.00% 1536 0.00% 100.00%		19.3	12	10.91%	23.64%
38.5 12 10.91% 54.5 18 16.36% 77 12 10.91% 109 14 12.73% 154 2 1.82% 218 8 7.27% 309 6 5.45% 437 0.00% 768 0.00% 1536 0.00% 2048 10.00%		27.3	12	10.91%	34.55%
54.5 18 16.36% 77 12 10.91% 109 14 12.73% 154 2 1.82% 218 8 7.27% 309 6 5.45% 437 0.00% 768 0.00% 1536 0.00% 2048 110 100.00%		38.5	12	10.91%	45.45%
77 12 10.91% 109 14 12.73% 154 2 1.82% 218 8 7.27% 309 6 5.45% 437 0.00% 768 0.00% 1536 0.00% 2048 0.00% 110 100.00%		54.5	18	16.36%	61.82%
109 14 12.73% 154 2 1.82% 218 8 7.27% 309 6 5.45% 437 0.00% 768 0.00% 1536 0.00% 2048 0.00% 110 100.00%		2.2	12	10.91%	72.73%
154 2 1.82% 218 8 7.27% 309 6 5.45% 437 0.00% 768 0.00% 1536 0.00% 2048 0.00% 110 100.00%	Cobblo	109	14	12.73%	85.45%
218 8 7.27% 309 6 5.45% 437 0.00% 768 0.00% 1536 0.00% 2048 0.00% 110 100.00%	20000	154	2	1.82%	87.27%
309 6 5.45% 437 0.00% 768 0.00% 1536 0.00% 2048 0.00% 110 100.00%		218	8	7.27%	94.55%
437 0.00% 768 0.00% 1536 0.00% 2048 0.00% 110 100.00%		309	9	5.45%	100.00%
768 0.00% 1536 0.00% 2048 0.00% 110 100.00%	Boulder	437		0.00%	100.00%
1536 0.00% 2048 0.00% 110 100.00%		768		0.00%	100.00%
2048 0.00% 110 100.00%		1536		0.00%	100.00%
110	Bedrock	2048		0.00%	100.00%
	Total		110	100.00%	

10000

1000

100

0.1

0,01

20 00% 10.00% %000

30.00%

Percent Finer

Grain Size (mm)

MY-1

Pebble Count Exhibit

Cumulative Percent

E	MICHEE CIECK		Stream Resolution	Mation
	Clear		Creek Upstream	ш
		Riffle	le	
Particle	Size	Count	Percent	Cumulative Percent
Silt Clay	0.062	12	12.00%	12.00%
	0.0935		%00.0	12.00%
	0.1875	2	2.00%	17.00%
Sand	0.375		0.00%	17.00%
	0.75		0.00%	17.00%
	1.5		0.00%	17.00%
	3		%00'0	17.00%
	4.85		0.00%	17.00%
	6.85		%00.0	17.00%
	9.62		0.00%	17.00%
Gravel	13.65		%00.0	17.00%
	19.3		%00'0	17.00%
	27.3	2	2.00%	22.00%
	38.5	2	2.00%	27.00%
	54.5	6	%00.6	36.00%
	77	20	20.00%	%00:99
Olddo	109	23	23.00%	79.00%
coppie	154	16	16.00%	95.00%
	218	9	2.00%	100.00%
	309		%00'0	100.00%
Dougla	437		%00.0	100.00%
i i i i i i i i i i i i i i i i i i i	292		%00'0	100.00%
	1536		%00.0	100.00%
Bedrock	2048		%00.0	100.00%
Total		100	100.00%	

10000

1000

100

Grain Size (mm)

0.1

0.01

10 00%

%000

■MY-1

%00 09 %00 09

20 00% 40 00% 30.00% 20 00%

Percent Finer

100 00%

90.00% 80.00%

	9 65		%000	17.00%	
	3		0.00.0	0/00:11	7
Gravel	13.65		%00.0	17.00%	
41	19.3		%00.0	17.00%	_
	27.3	2	2.00%	22.00%	
	38.5	5	2.00%	27.00%	_
	54.5	6	%00.6	36.00%	
	1.7	20	20.00%	26.00%	
04400	109	23	23.00%	79.00%	_
alggoo	154	16	16.00%	92.00%	
	218	5	2.00%	100.00%	
	309		%00.0	100.00%	
707	437		%00.0	100.00%	
ponine	768		%00.0	100.00%	
	1536		%00.0	100.00%	
Bedrock	2048		%00.0	100.00%	
Total		100	100.00%		
	Summan Data	te Clar			
•	מבווו	רם ל ה			

₹ ₹

D50 D84 D95

Pebble Count Exhibit

Cumulative Percent

Mc	cee Cre	ek Stre	Mckee Creek Stream Restoration	oration	
k-E	Clear C	reek D	Creek Downstream	am	
		Riffle	le		
Particle	Size	Count	Percent	Cumulative Percent	
Silt Clay	0.062	8	80.0	0.08	
-	0.0935		0.00%	8.00%	
	0.1875	3	3.00%	11.00%	
Sand	0.375	2	2.00%	13.00%	
	0.75	1	1.00%	14.00%	
	1.5	3	3.00%	17.00%	
	3	1	1.00%	18.00%	
	4.85	8	8.00%	26.00%	
	6.85	1	1.00%	27.00%	
	9.62	5	5.00%	32.00%	
Gravel	13.65	9	6.00%	38.00%	
	19.3	13	13.00%	51.00%	
	27.3	3	3.00%	54.00%	
	38.5	11	11.00%	65.00%	
	54.5	3	3.00%	800.89	
	22	2	2.00%	73.00%	
Cobblo	109	7	7.00%	80.00%	
CODDIE	154	15	15.00%	95.00%	
	218	3	3.00%	98.00%	
	309	2	2.00%	100.00%	
100	437		0.00%	100.00%	
Poning	292		0.00%	100.00%	
	1536		%00.0	100.00%	
Bedrock	2048		%00'0	100.00%	
Total		100	100.00%		

10000

1000

100

Grain Size (mm)

0.1

0 0

0.2

Percent Finer

0.9

Summary Data

D84 D84 D95

						10a. Bas Creek Pro												
Parameter	Gauge2	Re	gional Cı	urve		Pre-Ex	isting Co	ndition			Design		THE THE PROPERTY.	N	Monitorin	g Baselir	ne	
Dimension and Substrate - Riffle Only		LL	UL	Eq.	Min	Med	Max	SD5	n	Min	Med	Max	Min	Mean	Med	Max	SD5	n
Bankfull Width (ft)				27.5		31.8				31							
Floodprone Width (ft)				75		160			75		160						
Bankfull Mean Depth (ft)			i	2.1		2.8				2.6							
1Bankfull Max Depth (f					3.5		4.4			3.4		4.4						
Bankfull Cross Sectional Area (ft2)				68.2		77.6			-	80							
Width/Depth Ratio	0				10.2		14.9				12							
Entrenchment Ratio				[2.6		5.5			2.4		5.2						
1Bank Height Rali	d				1	0140	2.1				1							
Profile		1500	1 V V 1				- Lower			LOW TO A		3.5						
Riffle Length (ft)						12.005											<u></u>
Riffle Slope (ft/ft					1.9		4.5			1.9		3.3						Щ
Pool Length (ft					1												<u> </u>	<u> </u>
Pool Max depth (ft					3.1	7/10	6.4			5.2		7.7						
Pool Spacing (ft	-			i	50		205			123.9		216.9						
Pattern											3.10							
Channel Beltwidth (ft)			1	65		145			93		139						
Radius of Curvature (ft					48		195			62	(carle of	108						
Rc:Bankfull width (ft/ft					27.5		31.8				31							
Meander Wavelength (ft					101		305			235		350						
Meander Width Ratio					2.2		5			2	WE HAVE	4.5						
			ALC: CHE	HAM AVAIL		10												
Transport parameters					SE COLUMN		7.25						a Ary					I I II S
Reach Shear Stress (competency) lb/f2	2	果身泥	7 N		1		0.49				0.52			WILL ST				
Max part size (mm) mobilized at bankfu		N THE ST					45				45				THE RESERVE			$dp^2 \approx$
Stream Power (transport capacity) W/m2		Missign							STALL IN									
Additional Reach Parameters														ATT IT				ME SOU
Rosgen Classification	n	OF ELECTION	all A Th				E4	***************************************		T	C4					124-17		10-1
Bankfull Velocity (fps				I			4.4-5.0				4.1							
Bankfull Discharge (cfs							350			Roy of Theory			il.	64 DIV				
Valley length (ft	-			HAT DESTRO	1000	(<u>/ </u>	0000000						MBWEIL O			A VEX		
Channel Thalweg length (ft						240					Place.	The last	8 (3)					
Sinuosity (ft			P FIELD		9		1.28				1.16				1304		19	W.
Water Surface Slope (Channel) (ft/ft							0.0029				0.0032		875 (3.51)					
BF slope (ft/ft				1 3100			0.0029			1	0.0032					1000		
3Bankfull Floodplain Area (acres						10.00				avaria)					HASTERN .		/ ///////////////////////////////////	
4% of Reach with Eroding Bank	(5				140 5026		W. 7	Was Febre	EV 76 (1)	7. 100			STALL.	CANER				24.6
Channel Stability or Habitat Metri				S / 1 S - W			mun New							59K-35V	STEEL STEEL	126	Maria all	N EVAIL
Biological or Othe	_			1			MAN OF THE		LA OLEAN		Na Talent							Str.

^{1 =} The distributions for these parameters can include information from both the cross-section surveys and the longitudinal profile. 2 = For projects with a proximal USGS gauge in-line with the project reach (added bankfull verification - rate).

^{3.} Utilizing survey data produce an estimate of the bankfull floodplain area in acres, which should be the area from the top of bank to the toe of the terrace riser/slope.

^{4 =} Proportion of reach exhibiting banks that are eroding based on the visual survey for comparison to monitoring data; 5, Of value/needed only if the n exceeds 3

	· ·							am Data S 2573 - Mc										
Parameter	Gauge2	Re	gional Cu	ırve			isting Co				Design				Monitorin	g Baselir	ne	
Dimension and Substrate - Riffle Only		LL	UL	Eq.	Min	Med	Max	SD5	n	Min	Med	Max	Min	Mean	Med	Max	SD5	n
Bankfull Width (ft				V42/4167	25.5		26.8				31.9	Chickens !			-V = 2 10	The same		
Floodprone Width (ft					75		160			75		160						
Bankfull Mean Depth (ft)			1	2.1		2.8				2,6			New less				
1Bankfull Max Depth (f		100			3.5		4.4			3.4		4.4						
Bankfull Cross Sectional Area (ft2)			233	68.2		77.6		4.0	1000	80							
Width/Depth Ratio					10.2	-	14,9				12							
Entrenchment Ratio					2.6		5.5			2.4	En. 2010	5.2						
1Bank Height Rati	q				1		2.1				1							
Profile		(News)	PER PER	130				STATE OF	15000									
Riffle Length (ft	X				101		305	Abad	ALST CO									
Riffle Slope (ft/ft			1		0.0055		0.0131		N Ryall	0.0061		0.0106						
Pool Length (ft					17 V. V. PHZ													
Pool Max depth (ft			1		6.5		6.5			5.3		8						
Pool Spacing (ft					45	(volte)	180			127.7		223.6						
Pattern		301						To all										
Channel Beltwidth (ft	y .		Section III II Cold		135		240			96		287						
Radius of Curvature (ft			t		95	3,5-40	240			64		144						
Rc:Bankfull width (ft/ft					25.5		26.8				31.9							
Meander Wavelength (ft				 	208		377			243	95 V	477			1			
Meander Width Ratio					5	1000	9.2			3		9						
						1-27-0												
Transport parameters	1200		100				10/20/20						Terre Year	111111111111111111111111111111111111111				
Reach Shear Stress (competency) lb/f2	2			THUR BEET			0.33			1	0.38		16.65%					
Max part size (mm) mobilized at bankful	-0	LINSON	A STATE				45				45						Total	V1 24 1
Stream Power (transport capacity) W/m2					18819868		EVEN TO		STR STO							4	MARINE DE	
Additional Reach Parameters		Name of	Va. (0.85)															5 118
Rosgen Classification	AZZIPICAL)	N. Y. W.	1000	74.0			E4			1	C4						8 1 1 1	
Bankfull Velocity (fps		Batter Brook	I				4.0-4.5			†	4.1							
Bankfull Discharge (cfs							350				# 1.02		6.7. A C			TOVERS !		
Valley length (ft		ALCO COLOR	The Interest	10 2003	Kering	100		78917.50		Sport in	NO ANTANIA	2000			alue expiri			
Channel Thalweg length (ft				3.44	3.8/4					189-48							(B) (M) (B)	
Sinuosity (ft			Will be Com				1.5				1.17		ic max	100				
Water Surface Slope (Channel) (ft/ft							0.0027			1	0.0027		E SELEC			Series Wi		
BF slope (ft/ft		C. O. O.	et all the	5 5 70			0.0018				0.0018						The state of	
3Bankfull Floodplain Area (acres		May Lea	Y WELL	N. V.	E AVE					100		F.0			T. LOUATO			10 m
4% of Reach with Eroding Bank	S			1 12/2	7/57 58 6		V-III III						195235	WAR AND				
Channel Stability or Habitat Metric	c								IE B. M		100	a de la certa	Margaret .	View to			A TANGE	100510
Biological or Othe				Congress I		45000	7-58-11-2						B. 18	To Barrie	SURVENIEN	178 50		
Diological of Othe	V.	Upilla Valla	CONTRACTOR OF THE		THE RESERVE AND ADDRESS OF THE PARTY OF THE	The state of the state of	Contract Contract	THE RESERVE OF THE PARTY OF										

^{1 =} The distributions for these parameters can include information from both the cross-section surveys and the longitudinal profile. 2 = For projects with a proximal USGS gauge in-line with the project reach (added bankfull verification - rare).

^{3.} Utilizing survey data produce an estimate of the bankfull floodplain area in acres, which should be the area from the top of bank to the toe of the terrace riser/slope.

^{4 =} Proportion of reach exhibiting banks that are eroding based on the visual survey for comparison to monitoring data; 5. Of value/needed only if the n exceeds 3

					Baseline S eek Proje			_							
Parameter	Gauge2	Re	gional Cu	ırve		Pre-Ex	isting Co	ndition			Design	water atte	Di	xon Bran	ch
Dimension and Substrate - Riffle Only		LL	UL	Eq.	Min	Med	Max	SD5	n	Min	Med	Max	Min	Med	Max
Bankfull Width (ft)					11.5		16.7				17.3		7.9		13.9
Floodprone Width (ft)					50		150			90		190	35		100
Bankfull Mean Depth (ft)					1.3		2				1.4		8.0		1.4
1Bankfull Max Depth (ft					3.7		6.1			2.2		2.5	2		2.9
Bankfull Cross Sectional Area (ft2)					21.8		24.8				25		11.3		13.2
Width/Depth Ratio					5.8		12.8				12		5.4		10.8
Entrenchment Ratio					3.8		11.3			5.2		11	3.1		8.9
1Bank Height Ratio					1.4		2.3				1		1.1		1.5
Profile															
Riffle Length (ft))											<u> </u>			
Riffle Slope (ft/ft))				0.0059		0.0084			0.0061		0.0106	0.012		0.018
Pool Length (ft)															
Pool Max depth (ft)					2.8		3.3			5.3		8	2.1		2.5
Pool Spacing (ft))				57.5		116.9			127.7		223.6	10		45
Pattern		A SOLIT							T						
Channel Beltwidth (ft))				35		47			52		78	29		50
Radius of Curvature (ft)					15		25			35		52	6		22
Rc:Bankfull width (ft/ft)	X				11.5		16.7				17.3		7.9		13.9
Meander Wavelength (ft)	X				45		75			132		196	48		85
Meander Width Ratio	·				3.4		5.6			3		4.5	4.3		7.6
Transport parameters					有数数。										
Reach Shear Stress (competency) lb/f2			Va. 38. V												
Max part size (mm) mobilized at bankful															
Stream Power (transport capacity) W/m2			S. Fry												
Additional Reach Parameters	Very 1														0.00
Rosgen Classification		19			9		E/C5				C4			E4	
Bankfull Velocity (fps))						3.3-3.9				3.6			3.6	
Bankfull Discharge (cfs))						89				No. 12.W				
Valley length (ft)					12.0								1.00		
Channel Thalweg length (ft)	× _					00010									
Sinuosity (ft)							1.12				1.21			1.3	
Water Surface Slope (Channel) (ft/ft)							0.0042				0.0071			0.0055	
BF slope (ft/ft)		La constitution					0.0042				0.0032			0.0055	
3Bankfull Floodplain Area (acres			The second		3050	PAN -			THE REEL						The state of
4% of Reach with Eroding Bank		8 Sec. 111	BANGE AT	New York											THE SECTION
Channel Stability or Habitat Metric	*	176,034		March 1							TE HER				Park Control
Biological or Other			a Carton												

^{1 =} The distributions for these parameters can include information from both the cross-section surveys and the longitudinal profile. 2 = For projects with a proximal USGS gauge in-line with the project reach (added bankfull verification - rare).

^{3.} Utilizing survey data produce an estimate of the bankfull floodplain area in acres, which should be the area from the top of bank to the toe of the terrace riser/slope,

^{4 =} Proportion of reach exhibiting banks that are eroding based on the visual survey for comparison to monitoring data; 5, Of value/needed only if the n exceeds 3

Table 10b.	Bas	eline	Strea	m Dat	a Sum	ımary					k, and ct # 92		ologic	Conta	ainme	ent Pa	ramet	er Dis	tribut	tions)	(
Parameter		Pro	e-Exis	ting C	ondit	ion	Marrie Co.		Refe	rence	Read	h(es)	Data			-3185	50h 30km	Desig	n	- TV-10-TES			As-b	uilt/Ba	aseline)	0,2 4
1Ri% / Ru% / P% / G% / S%	WEST	101/8-71			2005	TATE OF									111122	900000		Ī		Γ	T						
1SC% / Sa% / G% / C% / B% / Be%							3							1,000				1 1 1 S	200			(12)					80.00
1d16 / d35 / d50 / d84 / d95 / dip / disp (mm)	0.7	27.8	49.4	83.2	109.5			0.7	27.8	49.4	83.2	109.5							C. Holi								
2Entrenchment Class <1.5 / 1.5-1,99 / 2.0-4.9 / 5.0-9.9 / >10														E 100													
3Incision Class <1.2 / 1,2-1.49 / 1.5-1.99 / >2.0														0.00											97.		

- 1 = Riffle, Run, Pool, Glide, Step; Silt/Clay, Sand, Gravel, Cobble, Boulder, Bedrock; dip = max pave, disp = max subpave
- 2 = Entrenchment Class Assign/bin the reach footage into the classes indicated and provide the percentage of the total reach footage in each class in the table. This will result from the measured cross-sections as well as visual estimates
- 3 = Assign/bin the reach footage into the classes indicated and provide the percentage of the total reach footage in each class in the table. This will result from the measured cross-sections as well as the longitudinal profile

Footnotes 2,3 - These classes are loosley built around the Rosgen classification and hazard ranking breaks, but were adjusted slightly to make for easier assignment to somewhat coarser bins based on visual estimates in the field such that measurement of every segment for ER would not be necessary.

The intent here is to provide the reader/consumer of design and monitoring information with a good general sense of the extent of hydrologic containment in the pre-existing and the rehabilitated states as well as comparisons to the reference distributions.

ER and BHR have been addressed in prior submissions as a subsample (cross-sections as part of the design survey), however, these subsamples have often focused entirely on facilitating design without providing a thorough pre-constrution distribution of these parameters, leaving the reader/consumer with a sample that is welghted heavily on the stable sections of the reach. This means that the distributions for these parameters should include data from both the cross-section surveys and the longitudinal profile and in the case of ER, visual estimates. For example, the typical longitudinal profile permits sampling of the BHR at riffles beyond those subject to cross-sections and therefore can be readily integrated and provide a more complete sample distribution for these parameters, thereby providing the distribution/coverage necessary to provide meaningful comparisons.

Table 10b.	Base	eline	Strear	n Data	Sum	mary		strate Kee C					ologi	Cont	ainm	ent Pa	rame	ter Di	stribu	ıtions)							
Parameter		Pre	-Exis	ting C	ondit	ion	SOUTH S		Refe	erence	Reac	h(es)	Data	- V- 105	Telepool (2002		Desig	n	10-10-1	1000000		W	As-b	uilt/B	aselin	le	
1Ri% / Ru% / P% / G% / S%			23/3/25/49		A 200 KING				7689V		24.5												31323003					
1SC% / Sa% / G% / C% / B% / Be%							HE W									81.50		et i i		1.290		Carlo						
1d16 / d35 / d50 / d84 / d95 / dip / disp (mm)	0.7	27.8	49.4	83.2	109.5			0.7	27.8	49.4	83.2	109.5						1.7(36)										
2Entrenchment Class <1.5 / 1.5-1,99 / 2.0-4.9 / 5.0-9.9 / >10						0.00									A ST													
3Incision Class <1.2 / 1.2-1,49 / 1.5-1.99 / >2.0												BAN					12,81		8705							W.		

- 1 = Riffle, Run, Pool, Glide, Step; Sift/Clay, Sand, Gravel, Cobble, Boulder, Bedrock; dip = max pave, disp = max subpave
- 2 = Entrenchment Class Assign/bin the reach footage into the classes indicated and provide the percentage of the total reach footage in each class in the table. This will result from the measured cross-sections as well as visual estimates
- 3 = Assign/bin the reach footage into the classes indicated and provide the percentage of the total reach footage in each class in the table. This will result from the measured cross-sections as well as the longitudinal profile

Footnotes 2,3 - These classes are loosley built around the Rosgen classification and hazard ranking breaks, but were adjusted slightly to make for easier assignment to somewhat coarser bins based on visual estimates in the field such that measurement of e

The intent here is to provide the reader/consumer of design and monitoring information with a good general sense of the extent of hydrologic containment in the pre-existing and the rehabilitated states as well as comparisons to the reference distributions ER and BHR have been addressed in prior submissions as a subsample (cross-sections as part of the design survey), however, these subsamples have often focused entirely on facilitating design without providing a thorough pre-constrution distribution of the the reach. This means that the distributions for these parameters should include data from both the cross-section surveys and the longitudinal profile and in the case of ER, visual estimates. For example, the typical longitudinal profile permits sampling a more complete sample distribution for these parameters, thereby providing the distribution/coverage necessary to provide meaningful comparisons.

Table 10b	. Base	line S	Stream	n Data	Sumr				Bed, reek F				ologic	Con	tainm	ent Pa	arame	ter Di	stribu	itions)							
Parameter		Pre	-Exist	ing C	onditi		\Box		Refer				Data	0.000	************	CUPALITER		Desig	n	UES SENS	Zasan Visio	2 170 170 170	8 978	As-b	ouilt/Ba	aselin	е	A 1-30 1-16
1Ri% / Ru% / P% / G% / S%	E D LYOUR		100 100	8,000000				ATPALING.		MS-MIL		20,000	VARIA .		2000000	White stills		ACT SHOW	9200000				The Control of					
1SC% / Sa% / G% / C% / B% / Be%						14																						
1d16 / d35 / d50 / d84 / d95 / dip / disp (mm	0.35	0.7	1.2	3.2	6			0.4	1.3	3	14	18			113													
2Entrenchment Class <1.5 / 1.5-1.99 / 2.0-4.9 / 5.0-9.9 / >10	1						5 /4																					
3Incision Class <1,2 / 1,2-1,49 / 1,5-1,99 / >2,							1/5											100		1	The state of					7. E. S. F.		

- 1 = Riffle, Run, Pool, Glide, Step; Silt/Clay, Sand, Gravel, Cobble, Boulder, Bedrock; dip = max pave, disp = max subpave
- 2 = Entrenchment Class Assign/bin the reach footage into the classes indicated and provide the percentage of the total reach footage in each class in the table. This will result from the measured cross-sections as well as visual estimates
- 3 = Assign/bin the reach footage into the classes indicated and provide the percentage of the total reach footage in each class in the table. This will result from the measured cross-sections as well as the longitudinal profile

Footnotes 2,3 - These classes are loosley built around the Rosgen classification and hazard ranking breaks, but were adjusted slightly to make for easier assignment to somewhat coarser bins based on visual estimates in the field such that measurement of e

The intent here is to provide the reader/consumer of design and monitoring information with a good general sense of the extent of hydrologic containment in the pre-existing and the rehabilitated states as well as comparisons to the reference distributions ER and BHR have been addressed in prior submissions as a subsample (cross-sections as part of the design survey), however, these subsamples have often focused entirely on facilitating design without providing a thorough pre-constrution distribution of the the reach. This means that the distributions for these parameters should include data from both the cross-section surveys and the longitudinal profile and in the case of ER, visual estimates. For example, the typical longitudinal profile permits sampling a more complete sample distribution for these parameters, thereby providing the distribution/coverage necessary to provide meaningful comparisons.

Table 11a. Monito	ring C	ata - I	Dimer								onal F	aram	eters	– Cro	ss Se	ctions	5)				
	_						k Pro	ject #			-11	2 /D	1.4\			C	Co	otion 2	/Diffl	2)	
				ction 1	•						ction		_						(Riffle		
Based on fixed baseline bankfull elevation1	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	_	MY2	MY3	MY4	MY5	MY+	Base		MY2	MY3	MY4	MY5	MY
Record elevation (datum) used		583.4							582.7							580.8					
Bankfull Width (ft)		24.27							22.53							18					
Floodprone Width (ft)		160							160							150					
Bankfull Mean Depth (ft		1.89							2.45							1.36					
Bankfull Max Depth (ft)		2.76					<u> </u>		3.9					Щ		2.43				<u> </u>	
Bankfull Cross Sectional Area (ft2)		53							63.68							30.61					╙
Bankfull Width/Depth Ratio		12.82							9.2		<u> </u>					13.23				<u> </u>	Ь—
Bankfull Entrenchment Ratio		6.59							7.1							8.82					$ldsymbol{ldsymbol{ldsymbol{eta}}}$
Bankfull Bank Height Ratio		2.53							1.84							1					
Based on current/developing bankfull feature2	15 V-10									71 4					\$ 2 E			100			V Tu
Record elevation (datum) used								PASS OF													
Bankfull Width (ft)	A DESIGNATION OF THE PERSON OF				<u> </u>	Ī															
Floodprone Width (ft)	THE RESERVE																				
Bankfull Mean Depth (ft	ALTO DE LOS							Condition													
Bankfull Max Depth (ft	17/90/96/10													ĺ							
Bankfull Cross Sectional Area (ft2	THE PROPERTY.							11 = 4 = 2													
Bankfull Width/Depth Ratio	111 100 6277																				
Bankfull Entrenchment Ratio															-000						
Bankfull Bank Height Ratio	A CONTRACTOR OF THE PARTY OF																				
Cross Sectional Area between end pins (ft2)																					
d50 (mm	4																				
		Cro	ss Se	ction	4 (Poo	l-2)			Cro	ss Se	ction ((Riffl	e-3)			Cr	oss Se	ction	6 (Poo	l-3)	
Based on fixed baseline bankfull elevation1	Base	MY1		MY3			MY+	Base		_	w			MY+	Base	MY1	MY2	MY3	MY4	MY5	MY-
Record elevation (datum) used		580.2	14112	10110					579.9							579.1					
Bankfull Width (ft		17				-	_	1	17			\vdash				15					
Floodprone Width (ft	1-	150						 	250		-					250	1				
Bankfull Mean Depth (ft	} —	2.55				-		-	1.11		-	 				1.7					
Bankfull Max Depth (ft		3.97		_				-	1.96		-					3.46					
Bankfull Cross Sectional Area (ft2'		30.61				_		 	21.02		 					27.27	 				
Bankfull Width/Depth Ratio		6.66		-				┢──	15.37		├		 			8.8	_				T
Bankfull Entrenchment Ratio		8.82		-			_	<u> </u>	14.71		-					16.67					
Bankfull Bank Height Ratio		1.18		-	-				1	 						1	 				
		1.10	GA 15		10,24.8	108.40	NI PALIS	10			SHE HER	A SEVEN	3 3 8 8 7	News (I	NILO .	S Vide	No.	NEW JIII	Zelo v	13.55	W o
Based on current/developing bankfull feature2	A Paris		145165			Said Par				2000	Section 1				1975				- III CAN	24 10 114	
Record elevation (datum) used	ENTERED TO	┝			-	-					-		- -	-		⊢			┢	\vdash	
Bankfull Width (ft		┝╼┤									\vdash	-	├	-		<u> </u>	\vdash		\vdash	\vdash	
Floodprone Width (ft	100 CHESTON	┝─┤				_	1—		 			}				├─	\vdash		\vdash	\vdash	
Bankfull Mean Depth (ft		┝╼┥			 	<u> </u>	-		 		 	-	 			\vdash	\vdash			\vdash	\vdash
Bankfull Max Depth (ft	STATE STATE OF	\vdash			 	-	 	12 TO 10	 		-		_			\vdash	\vdash		\vdash	\vdash	
Bankfull Cross Sectional Area (ft2		\vdash					 	illo jis	 	<u> </u>	-	 	₩			\vdash	+	-	 	\vdash	┿
Bankfull Width/Depth Ratio	ALC: UNKNOWN	\vdash							<u> </u>			 	_	 	ardez (┢	╁	-	 	├─	╁
Bankfull Entrenchment Ratio	0.0000000000000000000000000000000000000	 	<u> </u>	—	<u> </u>				<u> </u>	—	 	 		├		 	╁	 		 	╁
Bankfull Bank Height Ratio					<u> </u>	<u> </u>		H. Charle	 	<u> </u>	 		<u> </u>	₩	9-3-4	-	╀──				╁
Cross Sectional Area between end pins (ft2							 	ļ	<u> </u>		-			 	_	}	┼─		-	\vdash	┯
d50 (mm	X			L				<u> </u>	L	L		I		<u> </u>	I	<u> </u>					Щ.

^{1 =} Widths and depths for monitoring resurvey will be based on the baseline bankfull datum regardless of dimensional/depositional development. Input the elevation used as the datum, which should be consistent and based on the baseline datur for prior years this must be discussed with EEP. If this cannot be resolved in time for a given years report submission a footnote in this should be included that states: "It is uncertain if the monitoring datum has been consist performer is being acquired to provide confirmation. Values will be recalculated in a future submission based on a consistent datum if determined to be necessary."

^{2 =} Based on the elevation of any dominant depositional feature that develops and is observed at the time of survey. If the baseline datum remains the only significant depositional feature then these two sets of dimensional parameters will be equal, however, if another depositional feature of significance develops above or below the baseline bankfull datum then this should be tracked and quantified in these cells.

arameter			Bas	eline					М	Y-1					M	Y-2					MY	'- 3					MY	'- 4			ــــــ		MY.	- 5	
Dimension and Substrate - Riffle only	Min	Mean	Med	Max	SD4	n	Min	Mean	Med	Max	SD4	n	Min	Mean	Med	Max	SD4	n	Min	Mean	Med	Max	SD4	n	Min	Mean	Med	Max	SD4	n	Min	Mean	Med	Max	SD4
Bankfull Width (ft)								24.7				1																							
Floodprone Width (ft)								160				1																							
Bankfull Mean Depth (ft)								1.89				1																							
1Bankfull Max Depth (ft)								2.76				1													Ì										
Bankfull Cross Sectional Area (ft2)								53				1																			┸	$ldsymbol{ldsymbol{ldsymbol{eta}}}$			
Width/Depth Ratio								12.82				_ 1																			\perp				\Box
Entrenchment Ratio								6.59				1																							
1Bank Height Ratio								2.53				1																							
Profile						8		V TINIT													H VOV								10	E	1				
Riffle Length (ft)							10	32.2	34	44	13,54	5																							
Riffle Slope (ft/ft)					1		-0.049	-0.003	0.012	0.028	0.035	5																							
Pool Length (ft)							24	36,6	39	55	12,74	5																							
Pool Max depth (ft)							1.242	2,386	2.187	3,287	0.423	5																			<u> </u>				
Pool Spacing (ft)							45	178.8	206	267	87.81	5																				<u> </u>			
attern				100	4					150																				.					17.5
Channel Beltwidth (ft)							97	101	101	105	5.657	2					Î																		
Radius of Curvature (ft)							65	128.3	120	200	67.88	3																							
Rc:Bankfull width (ft/ft)																																			
Meander Wavelength (ft)							282	322	322	362	56.57	2																							
Meander Width Ratio							4.042	4.208	4.208	4.375	0.236	2				-																		1	
Additional Reach Parameters				IN ATT						11-22	St. No.	SIA OIL	Se company					16.31		11/2	E AS					tions.		1000	1		#5186	1010/20			
Rosgen Classification	PERSONAL PROPERTY.	0.00		< 0/86.2				100	F4	I/C4			10000000		0.075		0.000000		LUCAL-SALL	100000															
Channel Thalweg length (ft)	—									122																					\top				
Sinuosity (ft)	\vdash									.39			_																		T				
Water Surface Slope (Channel) (ft/ft)	\vdash						<u> </u>			026																									
BF slope (ft/ft)	-						t —			026			\vdash																		\Box				
3Ri% / Ru% / P% / G% / S%	\vdash											- 45																							
3SC% / Sa% / G% / C% / B% / Be%	 						0	7.27	54.55	21.82	5.45	0	-																						
3d16 / d35 / d50 / d84 / d95 /	\vdash			30 150		30.5					309																								
2% of Reach with Eroding Banks				To have been a		and Doctors	1			10	<u> </u>																								
Channel Stability or Habitat Metric										N To	N 15																								
	\vdash	_											-						1																

										Exh	ibit Ta Mc	ble 11 Kee C	b. Mo reek P	nitorin roject	g Data # 9257	- Stre 73 Mck	eam Re Kee Cr	ach D eek- R	ata Su each 2	ımmar 2	у															
Parameter			Bas	eline					M	Y-1						Y-2					_	Y- 3					M	Y- 4					M	/- 5		-00E-0
Dimension and Substrate - Riffle only	Min	Mear	n Med	Max	SD4	n	Min	Mean	Med	Max	SD4	n	Min	Mean	Med	Max	SD4	n	Min	Mean	Med	Max	SD4	n	Min	Mean	Med	Max	SD4	n	Min	Mean	Med	Max	SD4	n
Bankfull Width (ft)	-	1	1	t		i	1							i																						
Floodprone Width (ft)				1			1																													
Bankfull Mean Depth (ft)				1	Ť	1	1																											igsqcup		
1Bankfull Max Depth (ft)																																				
Bankfull Cross Sectional Area (ft2)					1																															
Width/Depth Ratio																																				
Entrenchment Ratio																																		<u> </u>		
1Bank Height Ratio																										$oxed{oxed}$								↓ '		
Profile									A)		$d\eta \ge 2\eta$														16					<u> </u>		FAU				
Riffle Length (ft)		T					15	24	20	38	8	18																							igsqcup	
Riffle Slope (ft/ft)							0	0	0	0	0	18																	<u> </u>			<u> </u>			igsqcup	
Pool Length (ft)				Ī			10	43	32	132	33	15																			<u> </u>	<u> </u>				
Pool Max depth (ft)							2	3	3	4	1	6																				ļ				
Pool Spacing (ft)							59	84	86	103	19	4															<u> </u>				1_	<u> </u>				
Pattern	Charles	5.4												1																				<u> </u>		
Channel Beltwidth (ft)		T			T		42	91	64	170	56	5								3 11	- N											<u> </u>		<u> </u>		
Radius of Curvature (ft)							22	49	46	80	19	7					}				0.20										<u> </u>	<u> </u>		<u> </u>		
Rc:Bankfull width (ft/ft)		1																			TV.											<u> </u>		<u> </u>		
Meander Wavelength (ft)							138	437	290	1070	387	5															<u> </u>	<u> </u>				<u> </u>				
Meander Width Ratio							1.615	3.515	2.462	6.538	2.149	5																								
																									Name and Address of	- See 111	100 E		100 CO. F.	VE VE (500)	ed I make an	- FF 72 FF				Ser III
Additional Reach Parameters				43-45	15					i dia						Syntain.	(H					1910			No on					181					- P - 1 - 1	高 素
Rosgen Classification									E4	/C4																					-					
Channel Thalweg length (ft)									32	274																					_					
Sinuosity (ft)									1.	.12																					_					
Water Surface Slope (Channel) (ft/ft)										019																										
BF slope (ft/ft)									0.0	019																								_		
3Ri% / Ru% / P% / G% / S%																								14 M						19.68	i i		<u> </u>		$oxed{oxed}$	
3S C% / Sa% / G% / C% / B% / Be%																																			igsquare	
3d16 / d35 / d50 / d84 / d95 /							2410	170	47.5	Recta S								O ISSUE						18AC							1		<u> </u>			
2% of Reach with Eroding Banks										0																										
Channel Stability or Habitat Metric										e nins		To the																								
Biological or Other									13.0			10 13																								

Biological or Other

Shaded cells indicate that these will typically not be filled in.

1 = The distributions for these parameters can include information from both the cross-section surveys and the longitudinal profile.

2 = Proportion of reach exhibiting banks that are eroding based on the visual survey from visual assessment table

3 = Riffle, Run, Pool, Glide, Step; Silt/Clay, Sand, Gravel, Cobble, Boulder, Bedrock; dip = max pave, disp = max subpave

rameter			Bas	seline					M.	Y-1					MY	/-2					MY	- 3					M	/- 4					MY	- 5	
Imension and Substrate - Riffle only	Min	Mean	Med	Max	SD4	n	Min	Mean	Med	Max	SD4	n	Min	Mean	Med	Max	SD4	n	Min	Mean	Med	Max	SD4	n	Min	Mean	Med	Max	SD4	n	Min	Mean	Med	Max	SD4
Bankfull Width (ft)	1	†		\vdash	+	+		17.5		25.85		2																							
Floodprone Width (ft)							150	200		250		2																							
Bankfull Mean Depth (ft)							1.11	1.23		1.36		2																							
1Bankfull Max Depth (fi		1				\top	1.96	2.19		2.43		2																				igsqcup			
Bankfull Cross Sectional Area (ft2)							21.02	23.44		25.85		2																							
Width/Depth Ratio							13.23	14.29		15.37		2																			<u> </u>				
Entrenchment Ratio		1					8.333	11.52		14.71		2																				igsquare			
1Bank Height Ratio							1	1		1		2																			_				
Profile		WKS.			a aff				1/A/A	1			V2.												100	(2 (t)			THE R			L'	Ш		d to
Riffle Length (ft)		T	T	T			12	16.5	18	22	4	6																				igsquare			
Riffle Slope (ft/ft)		İ	1				0	0.021	0	0	0	6																				<u> </u>			
Pool Length (ft)		1					15	35.09	33	66	17	13																							
Pool Max depth (ft		İ				1	1.502	2.297	2	6	1	16																			<u> </u>	<u> </u>		_	
Pool Spacing (ft)	•—		1			1	26	105	98	189	55	8																		<u> </u>	<u> </u>	ļ'			
Pattern	2000		STATES.		CE SU		SPA DE	0.00		W.																					<u> </u>	<u> </u>			
Channel Beltwidth (ft	1	T	T	T	T	T	42	64.17	65	85	16	6		J. W.																<u> </u>		<u> </u>			
Radius of Curvature (ft)							20	44.82	40	84	23	11																	<u>.</u>			<u> </u>			
Rc:Bankfull width (ft/ft)						1	\top																								—				
Meander Wavelength (ft)							153	171.5	168	195	16	6	2013																<u> </u>	<u> </u>	<u> </u>	<u> </u>			
Meander Width Ratio							2.333	3.565	3.611	4.722	0.867	6		102																<u>. </u>					
Additional Basels Basels	20120				VID (5-0)		40,000			Carried State	of the lea			1000	Shire		76	Line Coll	Tribati			VIII.	No tra	第四种			16 Pa	Book	192	SFO			No en		THE
Additional Reach Parameters Rosgen Classification				10	FEEDVA		17525	Mark Mark		C4			A THE						III DE SC	100,000				XAIN TO		W10-13-15						05.0119.30			III COLORDO
Channel Thalweg length (ft	-						+			360			_						_												1				
Sinuosity (ft	1						+			.19			-						\vdash												†				
Water Surface Slope (Channel) (ft/ft)	1-						+			0033			_						\vdash												1				
BF slope (ft/ft	1-						+			0033									1												i T				
3RI%/Ru%/P%/G%/S%	├	T	1	T	T	-83E3	UNIVOR.	Sec. U	1.00	1000		DUALS.						1102						OCCUPATION OF						2					
3SC%/Sa%/G%/C%/B%/Be%	10/2012	William E.	190 600	0.0750	VA - 19300	MARKS	10	7	35	47	1	0	-	_	-		-	A DECREE	 																
3d16 / d35 / d50 / d84 / d95	*				1000	A Region				109					\vdash	_	_	16.32			_	$\neg \neg$		ALL DO											
2% of Reach with Eroding Bank					disan'	10.15	1.5	27.0		.01	104		-		_						_										1				
Channel Stability or Habitat Metric							╫		- 0	.01				-					1												1				
11001104	-		_		_		+		_				-					_													1				
Biological or Other Shaded cells indicate that these will typically not be																		_	_				_	_	¥										

Appendix E Hydrology Data

